Remote astrocytic response as demonstrated by glial fibrillary acidic protein immunohistochemistry in the visual cortex of dorsal lateral geniculate nucleus lesioned rats.

Article date: 1990/1/1

PubMed ID: 2144510

Journal name: Glia (ISSN: 0894-1491)


The reaction of astroglia was investigated after unilateral destruction of the dorsal lateral geniculate nucleus in the primary visual cortex of adult albino rats. The destruction of the dorsal lateral geniculate nucleus was performed by stereotaxic injections of ibotenic acid, and the location was verified in Nissl stained sections in each animal. Electron microscopic observations demonstrated the presence of degenerating axon terminals surrounded by hypertrophic astroglial processes mainly in layers III and IV of the ipsilateral primary visual cortex. The ipsilateral (impaired) and contralateral (control) sides of the primary visual cortex showed light microscopically a clearly differing appearance and distribution of glial fibrillary acidic protein (GFAP) immunoreactivity 7 to 11 days after the unilateral injection of ibotenic acid into the dorsal lateral geniculate nucleus. Whereas the control side of the primary visual cortex showed GFAP staining only in the subpial zone of layer I and close to the white matter, all layers of the impaired cortex showed an intense GFAP immunoreactivity. The increase in immunoreactivity was confined to the primary visual cortex. The extent of and increase in immunoreactivity was corroborated by image analysis. These findings were interpreted as a localized hypertrophy of astroglia caused by the anterograde degeneration of geniculocortical terminals. This hypertrophy is accompanied by an increase in GFAP, which may represent the stabilization of the cytoskeleton of newly formed glial processes involved in the rearrangement of the impaired neuropil.

This document is available from: http://directlinks.cc/files/muscimol/2144510.pdf

Author List: Hajós F, Kálmán M, Zilles K, Schleicher A, Sótonyi P

Publication Types: Journal Article; Research Support, Non-U.S. Gov't

Substances mentioned in the article: Glial Fibrillary Acidic Protein; Ibotenic Acid;

Mesh terms: Afferent Pathways/pathology; Animals; Astrocytes/analysis; Cell Division; Female; Geniculate Bodies/injuries; Glial Fibrillary Acidic Protein/analysis; Ibotenic Acid/toxicity; Male; Nerve Degeneration; Rats; Visual Cortex/pathology;

2144510.txt · Last modified: 2018/11/22 21:16 (external edit)