Effects of glutamic acid analogues on identifiable giant neurones, sensitive to beta-hydroxy-L-glutamic acid, of an African giant snail (Achatina fulica Férussac).

Article date: 1985/11/1

PubMed ID: 2862044

Journal name: British journal of pharmacology (ISSN: 0007-1188)


The effects of the seven glutamic acid analogues, alpha-kainic acid, alpha-allo-kainic acid, domoic acid, erythro-L-tricholomic acid, DL-ibotenic acid, L-quisqualic acid and allo-gamma-hydroxy-L-glutamic acid were examined on six identifiable giant neurones of an African giant snail (Achatina fulica Férussac). The neurones studied were: PON (periodically oscillating neurone), d-RPLN (dorsal-right parietal large neurone), VIN (visceral intermittently firing neurone), RAPN (right anterior pallial neurone), FAN (frequently autoactive neurone) and v-RCDN (ventral-right cerebral distinct neurone). Of these, d-RPLN and RAPN were excited by the two isomers (erythro- and threo-) of beta-hydroxy-L-glutamic acid (L-BHGA), whereas PON, VIN, FAN and v-RCDN were inhibited. L-Glutamic acid (L-Glu) had virtually no effect on these neurones. alpha-Kainic acid and domoic acid showed marked excitatory effects, similar to those of L-BHGA, on d-RPLN and RAPN. Their effective potency quotients (EPQs), relative to the more effective isomer of L-BHGA were: 0.3 for both substances on d-RPLN, and 1 for alpha-kainic acid and 3-1 for domoic acid on RAPN. alpha-Kainic acid also had excitatory effects on FAN and v-RCDN (EPQ for both: 0.3), which were inhibited by L-BHGA but excited by gamma-aminobutyric acid (GABA). Erythro-L-tricholomic acid showed marked effects, similar to those of L-BHGA, on VIN (EPQ: 0.3) and RAPN (EPQ: 3-1), but produced weaker effects on PON and d-RPLN (EPQ: 0.1). DL-Ibotenic acid produced marked effects, similar to those of L-BHGA, on PON, VIN (EPQ for both: 1) and RAPN (EPQ: 1-0.3), but had weak effects on d-RPLN (EPQ: less than 0.1) and FAN (EPQ: 0.1). It had excitatory effects on v-RCDN (EPQ: 0.1). This neurone was inhibited by L-BHGA but excited by GABA. L-Quisqualic acid showed the same effects as L-BHGA on all of the neurones examined (EPQ range 30-0.1). It was the most potent of the compounds tested on RAPN (EPQ: 30-10), FAN (EPQ: 30) and v-RCDN (EPQ: 3). alpha-Allo-kainic acid and allo-gamma-hydroxy-L-glutamic acid had no obvious effect on any of the neurones examined. As described above, the responses of the neurones examined to these substances varied widely. However, L-quisqualic acid generally had effects on the neurones similar to those of L-BHGA; the L-BHGA-excited neurones were also excited by alpha-kainic acid and domoic acid.

Author List: Nakajima T, Nomoto K, Ohfune Y, Shiratori Y, Takemoto T, Takeuchi H, Watanabe K

Publication Types: Comparative Study; Journal Article; Research Support, Non-U.S. Gov't

Substances mentioned in the article: Glutamates; Glutamic Acid; hydroxyglutamic acid;

Mesh terms: Animals; Chemoreceptor Cells/drug effects; Glutamates/pharmacology; Glutamic Acid; In Vitro Techniques; Membrane Potentials/drug effects; Neurons/drug effects; Snails/physiology; Stereoisomerism; Structure-Activity Relationship;

Citations: - The effect of ibotenic acid and muscimol on single neurons of the snail, Helix aspersa.

2862044.txt · Last modified: 2018/11/20 14:26 (external edit)